Development of a Human Tracking Indoor Mobile Robot Platform

Gürkan Küçükyıldız, Suat Karakaya

In this paper, a differential drive mobile robot platform was developed in order to perform indoor mobile robot researches. The mobile robot was localized and remote controlled. The remote control consists of a pair of 2.4 GHz transceivers. Localization system was developed by using infra­red reflectors, infrared leds and camera system. Real time localization system was run on an industrial computer placed on the mobile robot. The localization data of the mobile robot is transmitted by a UDP communication program. The transmitted localization information can be received any computer or any other UDP device. In addition, a LIDAR (Light Detection and Ranging; or Laser Imaging Detection and Ranging) and a Kinect three­dimensional depth sensor were adapted on the mobile robot platform. LIDAR was used for obstacle and heading direction detection operations and Kinect for eliminating depth data of close environment. In this study, a mobile robot platform which has specialties as mentioned was developed and a human tracking application was realized real time in MATLAB and C# environment.

Copyright © 2017

Romeda Bilgi Teknolojileri Ltd. Şti.